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Abstract
The mapping of the Wigner distribution function (WDF) for a given bound
state onto a semiclassical distribution function (SDF) satisfying the Liouville
equation introduced previously by us is applied to the ground state of the
Morse oscillator. The purpose of the present work is to obtain values of
the potential parameters represented by the number of levels in the case of the
Morse oscillator, for which the SDF becomes a faithful approximation of the
corresponding WDF. We find that for a Morse oscillator with one level only,
the agreement between the WDF and the mapped SDF is very poor but for a
Morse oscillator of ten levels it becomes satisfactory. We also discuss the limit
h̄ → 0 for fixed potential parameters.

PACS numbers: 03.65.−w, 03.65.Sq

1. Introduction

The Wigner description in phase space [1] provides a tool for comparing quantum and classical
dynamics [2]. In a previous paper [3] we introduced a mapping relating the Wigner distribution
function (WDF) corresponding to a given wavefunction, solution of the Schrödinger equation,
to a semiclassical distribution function (SDF) satisfying the classical Liouville equation with
the same potential. So far this mapping was applied to the ground state of the square well [3],
the Pöschl–Teller potential [4] and to a modified harmonic oscillator potential [4].

Here this mapping is extended to the ground state of the unidimensional Morse oscillator.
We vary the depth of the potential in order to study the effect of the level density on the
mapping.
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The Morse oscillator [5] plays an important role in many areas of physics, because it is a
good approximation to diatomic molecular potentials [6]. Today the Morse potential is used
in molecular spectroscopy, even for polyatomic molecules [7]. Some authors have used the
Morse potential for studying the semiclassical limit of quantum mechanics [8].

The unidimensional Morse oscillator in phase space has already been studied by many
authors. The classical motion [9] as well as the quantum representation [6] are well known
for this potential.

In section 2 of this work we summarize the method developed in [3] for mapping a WDF
onto the corresponding SDF. In section 3 we study the Morse oscillator and in section 4 we
present our results and conclusions.

2. Description of the method

In this section we present a short derivation of the method used for the mapping [3]. We start
with the quantum Liouville equation for the WDF ρ:

∂ρ

∂t
+

p

m

∂ρ

∂q
+

∫
K(q, p − p′)ρ(q, p′, t) dp′ = 0 (1)

where the kernel K is given by

K(q, p − p′) = i

h̄

∫
dv

2πh̄
exp

[ i

h̄
(p − p′)v

] [
V

(
q − v

2

)
− V

(
q +

v

2

)]
(2)

V (q) being the potential. The corresponding classical Liouville equation may be written
similarly as

∂ρc

∂t
+

p

m

∂ρc

∂q
+

∫
Kc(q, p − p′)ρc(q, p′, t) dp′ = 0 (3)

where

Kc(q, p − p′) = − i

h̄

∫
dv

2πh̄
exp

[ i

h̄
(p − p′)v

]
v
∂V

∂q
= −∂V

∂q

∂

∂p
δ(p − p′). (4)

We relate solutions ρ and ρc of equations (1) and (3) through the integral equation

ρ(q, p, t) = ρc(q, p, t) −
∫ ∞

−∞
dt ′

∫
dq ′ dp′Gc(q, p; q ′, p′, t − t ′)

×
∫

dp′′[K(q ′, p′ − p′′) − Kc(q
′, p′ − p′′)]ρ(q ′, p′′, t ′) (5)

where Gc is the retarded Green’s function corresponding to the classical Liouville
equation (3). In fact (5) is the defining equation of ρc since the WDF ρ is already determined by
fixing the wavefunction solution of the Schrödinger equation. Using the differential equation
satisfied by Gc [3] one may easily verify that ρc satisfies (3) provided ρ obeys (1).

As Kc is the limit of K when h̄ goes to zero, from (5) we obtain that the limit of ρ − ρc

will also be zero.
In what follows we shall consider mostly the mapping of the time-independent WDF

ρ(q, p) corresponding to a bound state.
It can be shown [3] that for points (q, p) on closed classical orbits the expression given

by (5) is equivalent to

ρc(q, p) = 1

T (q, p)

∫ 0

−T (q,p)

dt ρ(Q(q, p, t), P (q, p, t)). (6)

Here (Q(q, p, t), P (q, p, t)) describes the classical trajectory in phase space of a particle
subject to the potential V (q) which at time t = 0 occupies the point (q, p) and T = T (q, p)
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is the period of the orbit. For open trajectories we have T → ∞ and as for bound states the
integral in (6) converges, we get ρc = 0. As will be discussed further, in the calculation of
averages of physical quantities the quantity of interest is rather T (q, p)ρc(q, p) which does
not vanish for the open trajectories.

We observe here that one may verify directly that the time-independent Liouville equation
is obeyed by applying the operator p∂/∂q − (∂V/∂q)∂/∂p on the right-hand side of (6) and
using the fact that ρ(Q(q, p,−t), P (q, p,−t)) satisfies the classical Liouville equation (3).

An important property of the stationary SDF is that it is constant along the classical
trajectories [3].

Let (Q(E, ν, t), P (E, ν, t)) represent, for t in the interval −T (E, ν)/2 � t � T (E, ν)/2
(T may be infinity), the points of a trajectory in phase space corresponding to energy E and
fixed value of ν. Here the discrete parameter ν (ν = 1, . . . , νmax) distinguishes between the
different trajectories corresponding to the same value of E. By varying E and ν one covers the
entire allowed phase space. Thus we may consider the transformation of points (E, ν, t) in
the appropriate domains Dν of the energy–time space onto the points (p, q) of the phase space

q = Q(E, ν, t) p = P(E, ν, t). (7)

Let us define the function

Rc(E, ν) =
∫ T (E,ν)/2

−T (E,ν)/2
dt ρ(Q(E, ν, t), P (E, ν, t)). (8)

According to (6) one has

ρc(q, p) = Rc(E(q, p), ν)

T (E(q, p), ν)
(9)

by choosing the value of ν appropriate to the trajectory containing the point (q, p) as follows
from (7). We observe here that the relationship (8) between ρ(q, p) and Rc(E, ν) is analogous
to that between R(q), the probability density in coordinate space and the WDF ρ(q, p) [10]:

R(q) =
∫

ρ(q, p) dp. (10)

The average of any Weyl function [10] O(q, p) corresponding to a certain operator O
may be written as

〈O〉 =
∫

O(q, p)ρ(q, p) dp dq =
∑

ν

∫
Dν

o(E, ν, τ )r(E, ν, τ ) dE dτ (11)

where we introduced the functions

o(E, ν, τ ) = O(Q(E, ν, τ ), P (E, ν, τ )) (12)

r(E, ν, τ ) = ρ(Q(E, ν, τ ), P (E, ν, τ )) (13)

and we used the fact that the Jacobian J of the transformation (7) is unity [3].
In the special case in which the Weyl function O is a constant of motion depending on

(q, p) only through the energy E(q, p), we obtain from (11), (13) and (8)

〈O〉 =
∑

ν

∫
Dν

o(E, ν)r(E, ν, τ ) dE dτ =
∑

ν

∫
o(E, ν)Rc(E, ν) dE. (14)

As ρc is an approximation of the Wigner function ρ, correct in the limit of h̄ → 0, the
average

〈O〉c =
∫

O(q, p)ρc(q, p) dq dp (15)

is also correct in the same limit. Expression (15) may also be written, by making use of the
transformation (7), as



3690 G W Bund and M C Tijero

〈O〉c =
∑

ν

∫
Dν

o(E, ν, t)
Rc(E, ν)

T (E, ν)
dE dt =

∑
ν

∫
ō(E, ν)Rc(E, ν) dE (16)

where we used equations (9) and (12) and ō(E, ν) denotes the average

ō(E, ν) =
∫ T (E,ν)/2

−T (E,ν)/2
o(E, ν, t)

dt

T (E, ν)
. (17)

Thus the average 〈O〉c is obtained by replacing o(E, ν, t) in (11) by the average (17).
In the case of open paths the limit T (E, ν) → ∞ is taken in equation (17). If, for fixed E,

o(E, ν, t) depends weakly on t, the average 〈O〉c is expected to be a good approximation.

3. Wigner distribution function for the Morse potential

In 1929 Morse [5] suggested the potential U0(1 − e−αr )2 for studying diatomic molecules.
The Schrödinger equation for this potential does not have an exact solution, but for the
one-dimensional case the problem can be solved analytically [11, 12].

In order to obtain the Wigner distribution function [1]

ρ(q, p, t) = (2πh̄)−1
∫ ∞

−∞
dv e

i
h̄
pvψ

(
q − 1

2
v, t

)
ψ∗

(
q +

1

2
v, t

)
(18)

where ψ is the solution of the Schrödinger equation, we need the eigenfunctions for the
one-dimensional Morse potential

V(x) = D(1 − e−ax)2 (19)

a and D being constant parameters. Starting with the Schrödinger equation[
− h̄2

2m

d2

dx2
+ D(1 − e−ax)2

]
ψn = Enψn (20)

we introduce the dimensionless parameter λ

λ =
√

2mD

ah̄
(21)

and the dimensionless coordinate

q = ax (22)

obtaining an eigenvalue equation depending only on one parameter[
− 1

λ2

d2

dq2
+ (1 − e−q)2

]
ψn = εnψn (23)

where

εn = En

D
. (24)

This equation is solved most conveniently using the variable

ξ = 2λ e−q −∞ < q < ∞. (25)

The eigenfunctions and eigenvalues are [6]

ψn(ξ) = N(n, λ) e− ξ

2 ξλ−n− 1
2 L

λ−n− 1
2

n (ξ) (26)

εn = 2

λ

(
n +

1

2

)[
1 − 1

2λ

(
n +

1

2

)]
(27)
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where the quantum number n takes the values

n = 0, 1, 2, . . . ,
[
λ − 1

2

]
. (28)

Here [λ − 1/2] denotes the largest integer smaller than λ − 1/2, Ls
n is the polynomial [6]

Ls
n =

n∑
j=0

(
n + 2s

n − j

)
(−ξ)j

j !
(29)

and the normalization factor N is given by

N(λ, n) =
[
(2λ − 2n − 1)�(n + 1)

�(2λ − n)

] 1
2

(30)

where the normalization condition
∫

ψ∗
nψn dq = 1 is assumed. The normalization constant

with the usual normalization condition has been derived in [13].
From (27) one verifies that, for λ � 1 and n 	 λ, the energy spectrum of the Morse

oscillator is written approximately as En ≈ h̄ω0(n + 1/2), which is the spectrum of a harmonic
oscillator with frequency

ω0 = 2D

h̄λ
= a

√
2D

m
= λh̄

a2

m
. (31)

As the semiclassical distribution functions ρc for the harmonic oscillator coincide with
the Wigner functions ρ we expect that if λ � 1 ρc does get close to ρ for the low lying
levels. Thus it may be appropriate to use, instead of the variable q and its canonical conjugate
momentum p, the variables which treat harmonic oscillators on the same footing, namely [6]

Q =
[mω0

h̄

] 1
2
x =

[
2mD

a2h̄2λ

] 1
2

q =
√

λq (32a)

P = 1√
λ

p. (32b)

The coordinate Q and the momentum P have been used in figures 1–4. We define the
dimensionless potential V (Q)

V (Q) = (h̄ω0)
−1V(x) = λ

2

(
1 − e− Q√

λ

)2
(32c)

and the corresponding dimensionless energy levels

En = (h̄ω0)
−1En =

(
n +

1

2

)
− 1

2λ

(
n +

1

2

)2

. (32d )

We observe that the potential V (Q) is independent of λ for Q2 	 λ.
In the special case in which we are interested, namely the ground state, n = 0, the

wavefunction is given by

ψ0(ξ) =
[

2λ − 1

�(2λ)

] 1
2

ξλ− 1
2 e− ξ

2 . (33)

In order to calculate the Wigner function replace ψ by ψn(2λ e−q) in (18), obtaining

ρ(λ)
n (q, p) = (2πh̄)−1

∫ ∞

−∞
dv ψn

(
2λ e[−q+ v

2 ]
)
ψ∗

n

(
2λ e[−q− v

2 ]
)

e
i
h̄
pv. (34)

Introducing the new integration variable

τ = e
v
2 (35)
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(34) becomes

ρ(λ)
n (q, p) = (πh̄)−1

∫ ∞

0
ψ∗

n

(
ξ

τ

)
ψn(ξτ)τ 2iph̄−1 dτ

τ
(36)

where ξ is given by (25). Substituting ψn in (36) by expression (26) ρ(λ)
n becomes [6]

ρ(λ)
n (q, p) =

[
πh̄

2

]−1

[N(λ, n)]2ξ 2λ−2n−1
n∑

r=0

n∑
s=0

b(λ, n, r)b(λ, n, s)ξ r+sKs−r+2iph̄−1(ξ)

(37)

where

b(λ, n, j) =
(

2λ − n − 1
n − j

)
(−1)j

j !
(38)

and Kν(ξ) is defined by [6]

Kν(ξ) = 1

2

∫ ∞

0
e− ξ

2 (τ+ 1
τ
)τ ν dτ

τ
(39)

ν being a complex variable. In the particular case in which n = 0 we get

ρ
(λ)
0 (q, p) =

(
πh̄

2

)−1 2λ − 1

�(2λ)
ξ 2λ−1K2iph̄−1(ξ). (40)

The numerical method we used to calculate the function Kν(ξ) will be given in the
appendix.

The symmetries obeyed by the function Kν are

Kν∗(ξ) = 1

2

∫ ∞

0
e− ξ

2 (τ+ 1
τ
)(τ ν)∗

dτ

τ
= (Kν(ξ))∗ (41)

K−ν(ξ) = 1

2

∫ ∞

0
e− ξ

2 (τ+ 1
τ
)τ−ν dτ

τ
= Kν(ξ) (42)

where the last step is obtained by making τ → τ−1. From equations (42) and (41) we get

K−a+ib = K∗
a+ib. (43)

Thus (37) may be written as

ρ(λ)
n (q, p) =

[
πh̄

2

]−1

[N(λ, n)]2ξ 2λ−2n−1
n∑

r=0

n∑
s=0

b(λ, n, r)b(λ, n, s)ξ r+s Re(Ks−r+2iph̄−1(ξ))

(44)

showing explicitly that ρ(λ)
n is real.

In order to calculate the semiclassical distribution function ρc(q, p) given by (6) or (9),
we need the solution of the classical equation of motion

mẍ = −D
d

dx
(1 − e−ax)2 (45)

which has already been obtained exactly [9]. Introducing the coordinate q = ax and the
variable θ given by

θ = ω0t (46)

where ω0 is given by (31), (45) becomes

2
d2q

dθ2
= − d

dq
(1 − e−q)2. (47)



Mapping the Wigner distribution function of the Morse oscillator onto a semiclassical distribution function 3693

−2 0 2 4 6
Q

0

0.5

1

1.5

P

0.02

0.1

0.17

0.2

0.17

λ=1

0.17

0.03

0.05

0.05

Figure 1. Solid curves are curves with a constant value of the Wigner distribution function ρ and
dashed curves have constant value of the semiclassical distribution function ρc for the ground state
of the Morse oscillator with λ = 1. Except for ρ = 0.2, for each solid curve with a given ρ one
has one or two corresponding dashed curves with ρc such that ρc = ρ.

The solution of (47) for ε = E/D < 1, where E is the energy associated with the trajectory, is

q(E, t) = ln

{
1

1 − ε
[1 +

√
ε sin(

√
1 − ε(ω0t − θ0))]

}
. (48)

The canonical momentum associated with q is

p = mq̇

a2
(49)

which using equations (48) and (31) gives

p(E, t) = h̄λ

√
ε
√

1 − ε cos[
√

1 − ε(ω0t − θ0)]

1 +
√

ε sin[
√

1 − ε(ω0t − θ0)]
. (50)

The period associated with the orbit is

T (E) = 2π

ω0
√

1 − ε
. (51)

Analysing (48) one obtains that for E 	 D the trajectories are close to those of a harmonic
oscillator of frequency ω0.

4. Results

In this section we present the results of our calculations. We calculated the WDF ρ and the
corresponding SDF ρc for the ground state of the Morse oscillator choosing for the parameter
λ the values 1, 2, 4 and 10 corresponding to oscillators with 1, 2, 4 and 10 levels respectively.
In the figures we used the dimensionless coordinates Q and the conjugate momenta P (in units
of h̄) defined by (32a) and (32b).

Let us first consider the results for the WDF. Figures 1, 2, 3 and 4 reproduce our
calculations of the WDF for λ = 1, 2, 4 and 10 respectively through curves of constant
density ρ(Q,P ) (solid curves). The value of ρ varies from ρ ≈ 0.3 to ρ = 0 in the region



3694 G W Bund and M C Tijero
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0.03

0.01
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0.1

0.25
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Figure 2. Same as figure 1 for λ = 2. Except for ρ = 0.3 and ρ = 0.25, for each full curve one
has a corresponding dashed curve with ρc such that ρc = ρ.

−2 −1 0 1 2 3 4
Q

0

0.5

1

1.5

2

P

λ = 4

0.3

0.25

0.2

0.1

0.05

0.03
0.02

0.01

Figure 3. Same as figure 1 for λ = 4. Except for ρ = 0.3, for each full curve one has a
corresponding dashed curve with ρc such that ρc = ρ.

of phase space corresponding approximately to the region of classical particles bound by the
potential. On the remaining part of phase space ρ is much smaller in magnitude and there
occur close spaced domains (not represented in the figures), such that ρ alternates in sign in
the adjoining domains. Also the magnitude of ρ decreases rapidly as the domain gets farther
away from the origin.

We found that in the case λ = 1 the minimum value of ρ is (in units of h̄−1) of the order
of −10−2. This minimum approaches zero as λ increases, thus for λ = 4 the minimum of ρ

is reduced to about −10−4.
The maximum of ρ moves from the point (Q, P ) = (1.2, 0) to (Q, P ) = (0.3, 0) as λ

increases from 1 to 10 and its value increases slightly as λ increases. Thus the WDF curve for
ρ = 0.3, which is present for λ � 2, does not occur for λ = 1.
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−2 −1 0 1 2 3
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Q
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0.25
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0.1

0.05

0.03

0.02

0.01

Figure 4. Same as figure 1 for λ = 10. Except for ρ = 0.3, for each full curve one has a
corresponding dashed curve with ρc such that ρc = ρ.

Another feature of the WDF is that the curves of constant density ρ become more
symmetric with respect to an axis parallel to the P -axis as λ increases, becoming close to the
form of an ellipse. This tallies with the fact that for Q 	 √

λ, V (Q) is the potential of a
harmonic oscillator.

Also in figures 1–4 we present SDF curves for fixed ρc (dashed curves) together with WDF
curves with ρ = ρc for comparison. It will be seen that as λ increases the SDF improves, which
means also that the WDF curves of constant ρ become closer to classical trajectories. For the
Morse oscillator with λ = 1, our semiclassical approximation is anomalous considering that
ρc increases from ρc = 0.145 to ρc = 0.179 as the classical energy E varies from E = 0 to
E = 0.26h̄ω0 but decreases as E increases further. For λ � 2, ρc decreases as the energy E
increases until reaching the value ρc = 0. As a consequence, for λ = 1 one has two closed
curves with the same ρc for 0.145 < ρc < 0.179 whereas for λ � 2, for each ρc one has
only one such curve. Also for the WDF there is only one closed curve for each ρ from the
maximum value of ρ up to the curve ρ = 0.

In figure 1 we compare the WDF curves of constant ρ with the SDF curves for which
ρ = ρc in the case λ = 1. One notices that the discrepancies between both curves are very
large.

Making the same comparison for λ = 2, 4 and 10 in figures 2, 3, 4 we observe that for
ρ � 0.05 both curves are quite similar but displaced from each other. This displacement
becomes less pronounced as ρ gets closer to 0.05 so that the best agreement between ρ and ρc

is reached for ρ ≈ 0.05. Also as λ increases the displacement between both curves decreases,
as can be seen by comparing the oscillators λ = 4 and λ = 10. For ρ < 0.05 the curves
of fixed ρc compared with the curves of fixed ρ contain a certain amount of distortion which
becomes less pronounced as λ increases.

We remark here that for the Morse oscillator the largest value of ρc is smaller than the
largest value of ρ. Thus for each λ there is a range of values of ρ such that no classical
trajectories exist for which ρc is equal to ρ. The maxima of ρc are 0.227, 0.271 and 0.299
respectively for λ = 2, 4 and 10 whereas the maxima of ρ are of the order of 0.3 for these
values of λ. From the above values of ρc one verifies that the value of the maximum of ρc

increases as λ increases, getting for λ = 10 close to the maximum of ρ.
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The maximum of ρc for λ � 2 occurs at the origin of phase space, which is a point of
stable equilibrium. As mentioned already, the position of the maximum of ρ gets closer to the
origin of phase space as λ increases.

These results are in agreement with the assumption that as the number of levels of the
Morse oscillator increases the WDF tends to coincide with the corresponding SDF and that
λ ∼ 10 is a satisfactory value of the potential parameter.

If the parameters a and D of the potential (cf (19)) are fixed and h̄ is made to decrease
then λ according to the definition (21) will increase. In the limit h̄ → 0 we have λ → ∞
and the WDF and the SDF will coincide. If instead of the variables Q and P (32) we use the
original variables x and the corresponding canonical momentum, the WDF and SDF will be
delta functions describing a particle located at rest at the origin of phase space, a classical
limit consistent with our previous results [3, 4].

Appendix. Numerical evaluation of the Wigner function

Here we discuss the numerical calculation of the quantity Kν defined in (39) of section 3,

Kν(ξ) = 1

2

∫ ∞

0
e− ξ

2 (τ+ 1
τ )τ ν dτ

τ
. (A1)

Here ν is complex,

ν = N + 2ik (A2)

where N is an integer and k is the dimensionless momentum p/h̄ and according to (25)
and (22)

ξ = 2λ e−q q = ax. (A3)

Making the transformation

τ = eu (A4)

and considering that only the real part of Kν enters into expression (44) for the Wigner function
we get from (A1), substituting also ν according to (A2),

Re[Kν(ξ)] = 1

2

∫ ∞

−∞
e−ξ cosh u euN cos(2ku) du. (A5)

Let us take initially N = 0, which is the only value needed for the ground state of
the Morse oscillator. Consider also k �= 0 as the case k = 0 is calculated separately. For
convenience we introduce the new variable of integration

z = 2ku (A6)

and use the fact that the integrand is an even function of u, obtaining from (A5)

Re[Kν(ξ)] = 1

2k

∫ ∞

0
dz e−ξ cosh( z

2k
) cos z. (A7)

The integral in (A7) is of the form

I =
∫ ∞

0
f (z) cos z dz (A8)

where f (z) is a positive decreasing function of z. In order to avoid numerical cancellations
arising from the change of sign of cos(z), we replace this integral by an integral in the interval
[0, π/2] of a series of functions.
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We decompose I as follows:

I = I1 + I2 (A9)

where

I1 =
∫ π

2

0
f (z) cos z dz (A10)

and

I2 =
∫ ∞

π
2

f (z) cos z dz = −
∫ ∞

0
f

(
y +

π

2

)
sin y dy (A11)

where we made the substitution z = y + π
2 in I2. The interval of integration of the integral I2

is divided into the set of intervals [2πs, 2π(s + 1)], s = 0, 1, . . . , so that I2 is written as

I2 = −
∞∑

s=0

∫ 2π(s+1)

2πs

f
(
y +

π

2

)
sin y dy. (A12)

Making now the substitution

z = y − 2πs (A13)

for the integral in the interval [2πs, 2π(s + 1)], one obtains for (A12)

I2 = −
∞∑

s=0

∫ 2π

0
f

(
z +

(
2s +

1

2

)
π

)
sin z dz. (A14)

However sin z changes sign in the interval [0, 2π ] which leads to cancellation errors if f

is slowly varying in the interval. In order to eliminate the oscillation of sign of the integrand
we decompose again the integral in the intervals [0, π ] and [π, 2π ] obtaining

I2 = −
∞∑

s=0

{∫ π

0

[
f

(
z +

(
2s +

1

2

)
π

)
− f

(
z +

(
2s +

3

2

)
π

)]
sin z dz

}
. (A15)

As f is assumed to be monotonically decreasing each integrand in (A15) is now always
positive. As the domain of integration of the integral I1 is the interval [0, π/2] we make the
translation v = z − π

2 , obtaining

I2 = −
∞∑

s=0

∫ π
2

− π
2

[f (v + (2s + 1)π) − f (v + (2s + 2)π)] cos v dv. (A16)

Making v → −v for the contribution from the interval [−π
2 , 0] in (A16) and adding the

contribution from I1 one obtains finally∫ ∞

0
f (x) cos x dx =

∫ π
2

0
dx cos x

{
f (x) −

∞∑
s=0

[f ((2s + 1)π − x) + f ((2s + 1)π + x)

− f ((2s + 2)π − x) − f ((2s + 2)π + x)]

}
. (A17)

For f (x) monotonic each term of the series contributes with the same sign, however errors
may arise from the subtraction of the sum of the series from f (x).

In the general case in which N � 0 in (A5), the function f (z) in (A8) becomes

fN(z) = 1

2k
e−ξ cosh z

2k cosh

(
Nz

2k

)
z � 0 N = 0, 1, . . . . (A18)
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The function fN(z) has M (M � N) extremes at the real positive points z
(N)
1 , z

(N)
2 , . . . ,

z
(N)
M , labelled in order of increasing magnitude. This function decreases monotonically for

z > z
(N)
M and it may still be useful to apply the decomposition (A17) in order to eliminate

errors due to cancellations of contributions of opposite sign from the integrand fN(z) cos z. In
the general case only the sign of the first sN terms of the series in (A17) may oscillate, where
sN is given roughly by the smallest integer satisfying (2sN + 1)π > z

(N)
M . For s > sN the sign

of the terms of the series in (A17) is always positive.
In fact, one may determine the extremes of fN(z) by expressing fN(z) in terms of

cosh(z/2k) and applying the condition ∂fN(z)/∂z = 0. By making this substitution one
obtains for (A18) the expression

fN(z) = 1

2k
e−ξy

[N/2]∑
j=0

Aj(−1)j yN−2j y = cosh
( z

2k

)
(A19)

where [N/2] denotes the largest integer contained in N/2 and

Aj =
[N/2]∑
i=j

(
N

2i

) (
i

j

)
. (A20)

Thus we get the extrema of fN(z) as the roots of a polynomial of degree N. For N = 1 the
maximum occurs at

z
(1)
1 = 2k cosh−1

(
1

ξ

)
. (A21)

For N = 2 the maximum will be at

z
(2)
1 = 2k cosh−1

(
2

ξ
+

√
4

ξ 2
+ 2

)
. (A22)
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